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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT[18] Initial topologies, Dom(Li) and Stars of the
Plane.

1 Iterated integrals (trees, S ′ = MS , primitives, sectioned subalgebras)

2 Convergence of Picard’s process (initial topologies, standard topology
of H(Ω), ultrametric and Treves topologies, paths drawn on the
Magnus group)

3 The arrow Li (Dom(Li))

4 Integrators ιi (discontinuity of ι0)
5 Discussion, open questions

1 Topological complexity of Dom(Li),Li(Dom(Li))
2 Baire class of ι0

6 Some concluding remarks.
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S ′ = MS and iterated integrals.

1 Let (R, ∂) be a differential ring and X an alphabet. Then immediately
(R〈〈X 〉〉,d) is a differential ring (non commutative in general) with
d(S) =

∑
w∈X∗ ∂(〈S |w〉)w (term-by-term differentiation).

2 In the previous sessions (CCRT[16].t, we started from a NCDE,
NonCommutative Differential Equation) within (R〈〈X 〉〉,d)

S ′ = MS (1)

(+ various conditions) and discussed many algebraic aspects of
a supposed existing solution. Let us remark that a solution of
homogeneous equation other than zero need not exist.

3 We will be interested today by analytic aspects i.e. with ∅ 6= Ω ⊂ C
connected.

(R, ∂) = (H(Ω),
d

dz
) (2)
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S ′ = MS and iterated integrals/2

4 We remark at once that, in our context of today i.e. (2), the
derivative ∂ admits a section and this will give rise to a way of solving
all NCDE with M ∈ H(Ω)+〈〈X 〉〉. The method is the following

1 Pick a z0 ∈ Ω and then form the sequence in H(Ω)

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn(s)ds (3)

2 This sequence converges in H(Ω), for the topology of stationary
convergence (TSCV), to

Sz0

Pic := lim
n→∞

Sn (4)

(Picard’s process)
3 The set of solutions of (1) in our context (2) is then Sz0

Pic .C〈〈X 〉〉.
4 Remark that, in the context of iterated integrals,

Sz0

Pic =
∑

w∈X∗ αz
z0

(w)w .
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S ′ = MS and iterated integrals/3

5 (Iterated integrals) The context of iterated integrals corresponds to the case
when the multiplier is homogeneous of degree one (i.e. M is of the form∑

x∈X ux x) and an initial condition S(z0) = 1C〈〈X〉〉. All together, we get the
system

S ′ = MS ; S(z0) = 1C〈〈X〉〉 (5)

the (unique) solution Sz0

Pic is obtained by iterated integrals (we supposed Ω to
be connected and now simply connected). Explicitely put with w = x1 . . . xn

αz
z0

(w) =

∫ z

z0

ux1ds1

∫ s1

z0

. . .
[ ∫ sj

z0

uxj+1dsj+1

]
. . .

∫ sn−1

z0

uxndsn (6)

6 Summarizing: with the above and S =
∑

w∈X∗ αz
z0

(w)w(= αz
z0

) one gets
the solution of

S ′ =
(∑
x∈X

ux x
)
S ; S(z0) = 1H(Ω)〈〈X〉〉 (7)
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S ′ = MS and iterated integrals/4

7 Remark. – For a solution of, only

S ′ = MS , 〈S |1X∗〉 = 1Ω︸ ︷︷ ︸
Magnus

no need to use the same lower bound z0, one has only to take
antiderivatives. So, one could as well have a collection (zw )w∈X∗ of
lower bounds taken in Ω or at its frontier, providing that the so
generated improper integrals converged.

8 This is the case, in particular for (5), in the doubly-cleft plane,
fuschian inputsa and where the condition S(z0) = 1C〈〈X 〉〉 is replaced

by limz→0 S(z)e−x0 log(z) = 1H(Ω)〈〈X 〉〉, namely

S ′ = MS ; lim
z→0

S(z)e−x0 log(z) = 1H(Ω)〈〈X 〉〉 (8)

aΩ = Cr (]−∞, 0] ∪ [1,+∞[), u0 = 1/z , u1 = 1/(1− z).
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S ′ = MS and iterated integrals/5

9 Solution of NCDE with asymptotic condition (8) may not exist, but if
it does, it is unique.

10 For example the above (8) has a unique solution (Drinfel’d G0, see
[11]) and it can be shown that we can replace
limz→0 S(z)e−x0 log(z) = 1H(Ω)〈〈X 〉〉 by any condition of the form

limz→0 S(z)e−x0 log(z)U = 1H(Ω)〈〈X 〉〉 with success (i.e. getting a
solution, but not necessarily the same) and U ∈ C〈〈X 〉〉 iff

U ∈ 1 + C+〈〈X 〉〉︸ ︷︷ ︸
Mag(C,X )
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Explicit construction of Drinfeld’s G0

11 Given a word w , we note |w |x1 the number of occurrences of x1

within w

αz
0(w) =



1Ω if w = 1X∗∫ z

0
αs

0(u)
ds

1− s
if w = x1u∫ z

1
αs

1(u)
ds

s
if w = x0u and |u|x1 = 0∫ z

0
αs

0(u)
ds

s
if w = x0u and |u|x1 > 0

12 One can show (left to the reader) that
∑

w∈X∗ α
z
0(w)w is precisely

Drinfeld’s G0.
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The tree of iterated integrals

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

. Jonquière branch (= x∗0 x1) is in black.

〈S|xn0 〉 =
log(z)n

n!
; 〈S|x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S|x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S|xk−1

0 x1〉 = Lik (z)︸ ︷︷ ︸
Jonqui ère

= Li
x
k−1
0

x1
(z) =

∑
n≥1

zn

nk

〈S|x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; 〈S|xn1 〉 =
(−log(1− z))n

n!
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Solutions as paths drawn on the Magnus group.

13 The paradigm we will use in the future is that, if S(z) (each
coordinate holomorphic), drawn on the Magnus group is such that

1 S(z0) belongs to some closed subgroup G
2 d(S)S−1[z ] = M(z) belongs, for all z ∈ Ω to the tangent space T1(G ).
3 Here S(z0) is replaced by a limit condition (as if z0 ∈ Ω) we will exploit

the subgroup (i.e. Hausdorff) algebraically.

Lie Group G

L(G ) (Lie algebra)

S(z0)

S(z)

c

S ′(z)
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Main difference between αz
z0

and αz
0.

14 Here, we still work with
Ω = Cr (]−∞, 0] ∪ [1,+∞[) and u0 = 1/z , u1 = 1/(1− z)

15 αz
z0
, αz

0 : X ∗ H(Ω) are both shuffle characters (see below) but
they satisfy different growth conditions.

16 With αz
z0

, (z0 ∈ Ω). – Let us denote K(Ω) the set of compact
subsets of Ω. One can show that, for all K ∈ K(Ω), there exists
MK > 0 s.t.

(∀w ∈ X+)( ||〈αz
z0
|w〉||K ≤ MK

1

(|w | − 1)!
) (9)

17 This entails that, given a rational series T =
∑

n≥0 Tn (where
Tn =

∑
|w |=n〈T |w〉), the series, for all K ∈ K(Ω)∑

n≥0

||〈αz
z0
|Tn〉||K < +∞

18 We will say that T ∈ Dom(αz
z0

) and set αz
z0

(T ) =
∑

n≥0〈αz
z0
|Tn〉.
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Main difference between αz
z0

and αz
0/2

19 In fact, αz
0 satisfies no condition of the type (9) because, with x∗0x1

(Jonquière branch), we can see that
1 for n ≥ 1, (x∗0 x1)n = xn−1

0 x1, then

〈Li(z)|xn−1
0 x1〉 = 〈αz

z0
|xn−1

0 x1〉 = Jn(z) =
∑
k≥1

zk

kn
(10)

2 The series
∑

n≥0 Jn does not converge (even pointwise) on ]0, 1[
because,

x ∈]0, 1[=⇒ Jn(x) ≥ x

3 So, what can be salvaged ? → in fact, conditions (growth or other)
implying absolute convergence at the level of words is hopeless because
of restriction and we would like to preserve

Li(x∗0 ) = z ; Li(x∗1 ) = 1/(1− z) ; Li(S xT ) = Li(S).Li(T ) (11)

and then Li
(
(x0 + x1)∗

)
= z/(1− z)
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Main difference between αz
z0

and αz
0/3

20 Then, we must have a criterium (for admitting a series in Dom(Li))

21 Fortunately H(Ω) shares with finite dimensional spaces the following
property

Unconditional convergence⇐⇒ Absolute convergence (12)

22 Unconditional convergence for a series
∑

n≥0 un means
convergence “independent of the order” i.e. that

∑
n≥0 uσ(n)

converges whatever σ ∈ SN.

23 Absolute convergence is related to the seminorms of the space.

24 Time is ripe now to speak of the standard topology of H(Ω).

25 For K ∈ K(Ω), we introduce the seminorm (norm if Ω is connected
and K ◦ 6= ∅)

||f ||K = sup
z∈K
|f (z)|

15 / 37



Initial topologies.

26 We now use a very very general construction, well suited both for
series and holomorphic functions (and many other situations), that of
initial topologies (see [38] and, for a detailed construction [4], Ch1
§2.3)

C(Ki ;C)

X H(Ω) C(Kj ;C)

C(Kr ;C)

g

resKi ◦g

resKj

resKr

resKi

27 So H(Ω) is a locally convex TVS whose topology is defined by the
family of seminorms (|| ||K )K∈K(Ω).
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Topology of H(Ω) cont’d.

26 In fact, every Ω ⊂ C is σ-compact, this means that one can construct
a sequence (Kn)n∈N of compacts i.e. (∀K ∈ K(Ω))(∃n ∈ N)(K ⊂ Kn)
therefore H(Ω) is a complete (hence closed) subset of the product
Πn∈N C(Kn;C). To see this, add a point at infinity to the plane C and
consider the stereographic projection.

z = 0

P(x , y , 0)

(ξ, η, ζ)

(0, 0, 1)
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Properties of H(Ω) and domain of Li.

26 If Ω 6= ∅, H(Ω) is not normable because, there are two continuous
operators

a† : f 7→ z .f ; a : f 7→ d

dz
f

such that [a, a†] = IdH(Ω) (Hint Compute ada(eta
†
)).

27 H(Ω) has property (12).

28 This leads us to the following

Definition

Let T ∈ H(Ω)〈〈X 〉〉, we define (with [S ]n :=
∑
|w |=n〈S |w〉w)

Dom(T ) = {S ∈ C〈〈X 〉〉 |
∑
n≥0

〈T | [S ]n〉 cv inconditionally} (13)

If S ∈ Dom(T ), we set 〈T |S〉 :=
∑

n≥0〈T | [S ]n〉.
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Shuffle properties and domain of Li.

26 In the case when T is a shuffle character, we have

Theorem (GD, Quoc Huan Ngô, HNM [16] for Li)

Let T ∈ H(Ω)〈〈X 〉〉 such that

〈T | : P 7→ 〈T |P〉 (C〈X 〉 → H(Ω)) (14)

is a shuffle character. then
i) Dom(T ) is a shuffle subalgebra of (C〈〈X 〉〉, x , 1X∗).
ii) 〈T |S1 xS2〉 = 〈T |S1〉〈T |S2〉 i.e. S 7→ 〈T |S〉 is a shuffle character of
(Dom(T ), x , 1X∗) that we will still denote 〈T | .
iii) Then Im(〈T | ) is a (unital) subalgebra of H(Ω).
iv) In particular (see infra for an algebraic proof), z = Li(x∗0 ) and then,
C[z ] ⊂ Im(Li).
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Open problems and some solved

27 Do we have H(Ω) = Im(Dom(Li)) (= Im(Li)) ? (in other words does
it exist inaccessible f ∈ H(Ω) ?)

28 If z0 /∈ Ω, does 1/(z − z0) belong to Im(Li) ? (z0 ∈ Ω and z0 /∈ Ω)

29 (Solved) Are there non-rational series in Dom(Li) ? (answer yes)

30 (Solved) Is Crat〈〈X 〉〉 contained in Dom(Li) (answer no)

31 What is the topological complexity of Dom(Li) in the Borel
hierarchy (Addison notations, see [22] for details and use the
convenient framework of polish spaces [5], ch IX).

32 Borel hierarchy: We recall that this hierarchy is indexed by ordinals
and defined as follows

1 A set is in Σ0
1 if and only if it is open.

2 A set is in Π0
α if and only if its complement is in Σ0

α.
3 A set A is in Σ0

α for α > 1 if and only if there is a sequence of sets
A1,A2, . . . such that each Ai is in Π0

αi
for some αi < α and A =

⋃
Ai .

4 A set is in ∆0
α if and only if it is both in Σ0

α and in Π0
α.
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Open problems and some solved/2

33 From slide (10), one can remark that the iterated integrals are based on two
integrators, informally defined as

ι1(f ) :=

∫ z

0

f (s)
ds

1− s
; ι0(f ) :=

∫ z

z0

f (s)
ds

s
with z0 ∈ {0, 1} (15)

ι1 is defined and continous on H(Ω) and ι0 is defined on spanC{Liw}w∈X∗a

(context-dependent) and not continuous [16] on this set (see below).
Problem What is the Baire class of ι0 ?

34 Recall that K(Ω) admits a cofinal sequence (Kn)n∈N of compacts i.e.
(∀K ∈ K(Ω))(∃n ∈ N)(K ⊂ Kn) therefore H(Ω) is a complete (hence
closed) subset of the product Πn∈NC(Kn;C) .

35 An alternative way (see [16]) is to define

Kn = {z ∈ Ω | d(z , z0) ≤ n and d(z ,Cr Ω) ≥ 1

n
}.

aIt can be a little bit extended, see our paper [16].
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Discontinuity of ι0.

To show discontinuity of ι0, one of the possibilities consists in exhibiting two
sequences fn, gn ∈ C{Liw}w∈X∗ converging to the same limit but such that

lim ι0(fn) 6= lim ι0(gn).

Here, we choose the function z for being approached in a twofold way and if ι0
were continuous, we would have equality of the limits of the image-sequences
(and this is not the case). We first remark that

z =
∑
n≥0

logn(z)

n!
=
∑
n≥1

(−1)n+1 logn((1− z)−1)

n!
= Li(x∗0 ) = 1− Li((−x1)∗)

Set

fn =
∑

0≤m≤n

logm(z)

m!
and gn =

∑
1≤m≤n

(−1)m+1 logm((1− z)−1))

m!

(these two sequences are in C{Liw}w∈X∗).
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Discontinuity of ι0. cont’d

It is easily seen that ι0(fn) = fn+1 − 1 and then that lim
n→+∞

ι0(fn)(z) = z − 1.

Now, for any s ∈ [0, z ] with z ∈]0, 1[, one has

|gn(s)| = |
n∑

m=1

(−1)m+1 logn(1− s)

m!
| ≤

n∑
m=1

| logn(1− s)|
m!

≤ exp(− log(1− s))− 1 =
s

1− s
.

In order to exchange limits, we apply Lebesgue’s dominated convergence theorem
to the measure space (]0, z ],B, dz/z) (B is the usual Borel σ-algebra) and the
function p(x) = s(1− s)−1 which is - as are the functions gn - integrable on ]0, z ]
(for every z ∈]0, 1[). Then

lim(ι0(gn)) = lim
n→+∞

z∫
0

gn(s)
ds

s
=

z∫
0

lim
n→+∞

gn(s)
ds

s
=

z∫
0

s
ds

s
= z .

Hence, for z ∈]0, 1[, we obtain, lim(ι0(fn)) = z − 1 6= z = lim(ι0(gn)) This
completes the proof. 23 / 37



Li as a shuffle character (Lie theoretical proof, sketched).

36 Recall what has been said in one of our previous CCRT about the
Hausdorff group of the Hopf algebra (C〈X 〉, x , 1X∗ ,∆conc, ε) (the
antipode exists but is not needed here). Let us recall its features

1 The shuffle product between two words is defined by recursion or
duality (see our paper [13])

2 ∆conc, the dual of conc is defined, within C〈X 〉, by duality
〈∆conc(w)|u ⊗ v〉 = 〈w |uv〉

or combinatorially ∆conc(w) =
∑

uv=w u ⊗ v
3 ε(P) = 〈P|1X∗〉

37 For every Hopf algebra (B, µ, 1B,∆, ε), the set Ξ(B) of characters of
(B, µ, 1B) is a group under convolution (a monoid in case of a general
bialgebra, see our paper [14] Prop. 5.6).

38 Here, due to the fact that C is a field, we can characterize the group
of shuffle characters Ξ(B) by the (algebraic) equations

〈S |1X∗〉 = 1C ; ∆x (S) = S ⊗ S (16)
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Li as a shuffle character/2

39 Let us now consider an evolution equation S ′ = M.S in H(Ω)〈〈X 〉〉 with a
primitive multiplier i.e., for all z ∈ Ω,

∆x (M(z)) = M(z)⊗ 1X∗ + 1X∗ ⊗M(z)

40 Then, if S is group-like (for ∆x ) at one point z0 ∈ Ω, it is group-like
everywhere (we will see that the point can be remote, or frontier).

41 Let us have a look at the proof, from which we will deduce the version with
asymptotic initial condition. We propose the first following statement

Proposition

Let be given, within H(Ω)〈〈X 〉〉, the following evolution equation

S ′ = M.S ; S(z0) = 1H(Ω)〈〈X〉〉 (17)

we suppose that, for all z ∈ Ω, M(z) is primitive (for ∆x ).

Then, for all z ∈ Ω, S(z) is group-like (for ∆x ). This means that S is a
character of (H(Ω)〈X 〉, x , 1X∗). 25 / 37



Li as a shuffle character/3

Proof
42 Firstly, we transform (17) by ∆x (which commute - easy exercise -

with derivation)

∆x (S)′ = ∆x (S ′) = ∆x (M).∆x (S) ; ∆x (S(z0)) = 1⊗ 1

43 Taking into account that M is primitive, we get

∆x (S)′ = (M ⊗ 1 + 1⊗M).∆x (S) ; ∆x (S(z0)) = 1⊗ 1 (18)

44 Let us see what happens to S ⊗ S

(S⊗S)′
(1)
= S ′⊗S+S⊗S ′ = MS⊗S+S⊗MS = (M⊗1+1⊗M).(S⊗S)

(19)

45 We see that ∆x (S) and S ⊗ S satisfy the same evolution equation
(same multiplier) and same initial condition (at z0).
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Li as a shuffle character/4

Proof
46 Then, for every z ∈ Ω, we have ∆x (S(z)) = S(z)⊗ S(z) (and still
〈S(z)|1X∗〉 = 1C).

47 Finally, as S(z) is a character for every z ∈ Ω, we get that S is a
character of (H(Ω)〈X 〉, x , 1X∗).

Let us try this one.

48 As an excellent exploratory exercise, we can try the multiplier
u0.x0 + u1.x1 + u2.[x0, x1]

with ui ∈ H(Ω).

49 For example, with
u0 = 1/z , u1 = 1/(1− z), u2 =

(
2Li2 + log(z) log(1− z)

)′
we do

not have linear independence of (〈S |w〉)w∈X∗ .

What is the condition ? (Forthcoming talk)
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Some shuffle subalegbras of Im(Li•) and their images.

50 Starting point (C〈X 〉, x , 1X∗)

(C〈X 〉, x , 1X∗) C{Liw}w∈X∗

(C〈X 〉, x , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

C〈X 〉xCrat〈〈x0〉〉xCrat〈〈x1〉〉 CC{Liw}w∈X∗

C〈X 〉 ⊗C Crat〈〈x0〉〉 ⊗C Crat〈〈x1〉〉

Li•

Li
(1)
•

Li
(2)
•

51 These extensions, as well as closed subgroup properties will be the
subject of forthcoming talks.
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Concluding remarks

We have started with iterated integrals (trees, S ′ = MS , primitives,
sectioned subalgebras towards integro-differential rings.)

Generating series of iterated integrals satisfy a very special class of
NCDE S ′ = MS (i.e. with multiplier of the type M =

∑
x∈X ux x and

initial condition S(z0) = 1).

This entails that the solution of (NCDE + Init) is a shuffle character.

Other solutions with then same multiplier share this property (shuffle
character), i.e. the solutions with asymptotic initial condition.

In particular the arrow Li (Dom(Li))

Integrators ιi (discontinuity of ι0)

Discussion, open questions
1 Topological complexity of Dom(Li),Li(Dom(Li))
2 Baire class of ι0
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THANK YOU FOR YOUR ATTENTION !
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